Question: The circuit shown is in a uniform magnetic field that is into the page. The circuit is square with sides of length L. The counter-clockwise current in the circuit is 0.20 A . At what rate is the magnitude of the magnetic field changing? Is it increasing or decreasing?

Question: Consider the four Maxwell equations:

1. $\oint \vec{E} \cdot d \vec{A}=q / \varepsilon_{0}$
II. $\oint \vec{B} \cdot d \vec{A}=0$
iII. $\oint \vec{E} \cdot d \vec{s}=-\frac{d \Phi_{B}}{d t}$
IV. $\oint \vec{B} \cdot d \vec{s}=\mu_{0} i+\mu_{0} \varepsilon_{0} \frac{d \Phi_{E}}{d t}$

Which of these equations must be modified if magnetic monopoles are discovered? What would each of the extra terms involve?

Question: Consider the parallel RLC circuit below.

A (2 points). If the drive voltage $\mathrm{V}_{\mathrm{s}}=\xi_{\mathrm{m}} \sin (\omega \mathrm{t})$, write down the voltage across the resistor, the inductor, and the capacitor as a function of time.

B (3 points). Derive the current I_{R} through the resistor.

C (3 points). Derive the time-dependent current I_{L} through the inductor, and write in terms of the inductive reactance $\mathrm{X}_{\mathrm{L}}=\omega \mathrm{L}$.

D (3 points). Derive the time-dependent current I_{C} through the capacitor, and write in terms of the capacitive reactance $X_{C}=1 /(\omega C)$.

E (3 points). Write down (do not solve) the expression relating the time-dependent currents I_{R}, I_{L}, and I_{C} to the total current through the circuit $I_{S}=I_{m} \sin (\omega t-\varphi)$.

Question: If you pull a loop of wire away from a current-carrying wire, as shown below:

A. What direction is the induced current around the loop?
B. Is there a force between the long wire and the loop? If so, what direction does it point?

Question: Imagine an RLC circuit driven by a DC EMF rather than an AC EMF, as shown below.

A. Immediately after the switch is closed, what is the voltage across the resistor, the capacitor, and the inductor?
B. A long time after the switch is closed, what is the voltage across the resistor, the capacitor, and the inductor?

